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Framework
e0

Statistical setting

Hi,...,Hm m hypotheses such that

H;: Hiois true vs 'H;; is true .
Question:
Which hypotheses among {H;,..., Hm} are true alternatives ?
@ A test statistic is computed for each H;.

@ Pi,..., Py denote the coresponding p-values.

@ mo: unknown proportion of true nulls among Pi, ..., Pn.
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Framework
oe

Statistical setting

Decision rule:
Build a rejection region

R(Pl,...,Pm)C{Pl,...,Pm} .

Type-I and Il errors:
e H; is a false positive if
Hip is true and P; € R(Py,...,Pm).
@ H; is a false negative if
Hiqis true and P; & R(P1,...,Pm).
Notation:
@ FP: number of false positives,
@ FN: number of false negatives,

@ R: number of rejected hypoteses.
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Framework
[ ]

Control of type-| errors

Family Wise Error Rate (FWER)
FWER :=P(FP >1) .

Bonferroni procedure:
Fora >0, R(P1,...,Pm) =[0,a/m)™.

= FWER[R(Py,...,Pn)] <) P(Pi<a/m)<a .

—— Does not really take into account other p-values.
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Framework

Control of type-| errors

False Discovery Rate (FDR)

Linear step-up procedure: (BH (95))
For any a >0, R (P1,...., Pm) = { Pay,-. Py }. with

k= max {i | P4y < ia/m}.

= FDR[R(Pi,...,Pm)]<ma<a .

— Estimating 7o would increase the power of the procedure.
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Outline

O Classical estimators of mg
@ Cross-validation based 7y estimator

@ Density estimation by histograms
@ Efficient cross-validation (closed-form expressions)

© Control of the FDR

® New plug-in adaptive procedure
O Assessment of the procedure
Q Local FDR estimation

@ lterative algorithm
@ kerfdr package
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I Classical 7 estimators
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Classical mg estimators
[ o]

Distributional assumptions

Labels: For every i, let H; ~ B(1 — ), with

H; =0, if H;y is true,

H; =1, otherwise.
Conditional distribution: For every i,

Pi|Hi=0 ~ fyknown,
Pi|Hi=1 ~ £ unknown.

Mixture model:

e fo =U(0,1) (continuous distribution),

@ Assuming independence implies

P g(x) = mo + (1 —mo) A(x), Vxe€0,1] .
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n Classical mg estimators
oe

Assumptions on f;
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e Assumption (V)):
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Remark:

Assumption (V) entails the identifiability of g
(Genovese Wasserman (04)).
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Classical mg estimators
[ ele}

Classical my estimators

Assumption (V)) with \ < 1:
Schweder and Spgtwoll (82)

_ Card({i | Pi > A})
N m(1l—X\) .

%55(/\) :

U‘W U‘Z 0‘3 UI4 U.‘5 U.‘E U.‘7 U‘B U‘B 1
— Requires to choose A € (0, 1) carefully.

Remark: Storey (02) uses bootstrap.

Improving multiple testing procedures by estimating the proportion of true null hypotheses Alain Celisse



n Classical mg estimators
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Classical my estimators

Assumption (V,) with A\ = 1:
Storey Tibshirani (03)
~

e 7> () approximated by cubic spline — %gzppmx(-).
°

~ST . /\55

To To approx(l)
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Classical mg estimators
(o] lo}

Classical my estimators

Assumption (V,) with A\ = 1:
Storey Tibshirani (03)

o 75°(-) approximated by cubic spline — %gzppmx(-).
°

~ST ._ ~S8§

To = ﬁO,approx(l) .

Without Assumption (V)):
Scheid Spang (04)

e Twilight: A 'backward’ approach yields R (P1,..., Pm).

~Twil .__ Card (R (P17 ceey Pm))
o = m

— Intensive computations are required.
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n Classical mg estimators
ooe

Partial conclusion

Goal:
Build an estimator, which is

o fully data-driven (automatic choice of \).
@ not time consuming.

@ also accurate in a wide range of realistic situations (not only
under Assumption (Vy)).

Idea:
Use

@ Density estimation by histograms.

o Cross-validation to avoid unrealistic assumptions.
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IT CV-based 7y estimator

(C. and Robin (09), arXiv:0804.1189)
(C. and Robin (08), CSDA)
(Arlot and C. (09), arXiv:0907.4728)
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n t CV-based estimator ght R contro
@00

Density estimation by histograms (C. and Robin (08))

Idea: The choice of A can be rephrased in tems of the choice of an
histogram estimator 5.

500 500
a0]] J 450
amn . 4
a0 — 0
amn i 3

Fo:=3(x), VxeNI1],
~Card (i | A< P <1)
N m(1l—X)
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n t CV-based estimator
(o] le}

Violation of Assumption (V)

Pounds and Cheng (06) noticed ‘U-shape’ p-value density can
occur in realistic situations.

035

0.3

It can occur
o with one-sided tests when the alternative is true.
o with a misspecified distribution of test statistics.

@ under some dependence.

Improving multiple testing procedures by estimating the proportion of true null hypotheses Alain Celisse



CV-based estimator
ooe

Relaxation of Assumption (V)

Assumption (V) )
i(x)=0, Vxe[\pu], witho<A<pu<l.

mo :=5(x), Vx€[Apu], =
CCad({i [ A< P < 1)) .
m(pu—A) :

Collection of histograms estimators
e regular bins of width 1/N on [0, A] and [u, 1].
@ merge bins between \ and pu.

— Choose the best histogram estimator.
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n C tirr CV-based estimator
900000000000

Risk estimation

o S={5,| ! €Z}: collection of histogram estimators.

@ The best histogram:
I":= Argminjez {llg — 54ll2} -
Cross-validation (CV)
1= Argmin,ezﬁcv (51),

where ﬁcv (5) is the CV estimator of the risk of 5.
Final histogram estimator
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CV-based estimator
0@0000000000

Cross-validation principle

0 05 1 0 05 1
3 . 3
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Alain Celisse
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CV-based estimator
000000000000

Explicit Leave-p-out cross-validation

Leave-p-out (LPO) Vi<p<m-1,
-1
~ n 1 ~ D ~D(®)
RE=(0) X |2 X {1s- 25}
Deg, P;eD)

where £, = {D(®) C {Py,...,P,} | Card (D)) = n — p}.
Algorithmic complexity:

Exponential O (e™).

— CV in general (LPO) is expensive (intractable) to compute.
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CV-based estimator
000800000000

Efficient Leave-p-out

Histogram For | = {/\}, partition of [0, 1],

§,(X):Z “|11,A, with ny := Card ({i | P; € y}) -

Closed-form expression For p € {1,..., m — 1},

-~ 2m—p o (m— p+ i N
B3 = (o 1m ) 2= mll] ~ (m ()

A

Computational complexity: O (m) instead of O (e™).

—— CV can be performed with no additional computation time.
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n C t CV-based estimator
000080000000

Choice of p

For each partition /, choose p(/) minimizing the MSE:

~ ~ 2
BU) = Arguines..m B | (R0 - llg = S112) |

— A closed-form expression is also available.

250

200

150

@ A large amount of p are
" larger than 50.

@ The choice of p is not
time consuming.

0
0 50 100 150 200 250 300 350 400 450 500

p selected from 500 trials with
m = 1000.
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CV-based estimator
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CV-based estimator of g

Estimation procedure
@ For each partition | € 7, define  p(/) = Argmin, MSE(/; p).
@ Find the best partition | = Argmin,ezﬁﬁ(,)(l).
© From /[, get (A 1).

: . Card{i: Pic[N\i
@ Compute the estimator 7§Y = Card{i: Pie[VA] } — D}
m(fi—X)

o8 1
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n C tirr CV-based estimator
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Consistency of 75"

Theorem

o If Assumption (V) ,) is fulfilled for 0 < \* < p* <1,

o if [\*, u*] is the widest interval such that g is constant,
then

Remarks:
@ This procedure is fully data-driven.

o It does not require any additional computational cost.
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n C tirr CV-based estimator
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Simulation experiments

Assumption (V;) fulfilled

Design

o f(t) =s(1—t)*1,

o s € {5,10,25,50}.

o mo € {0.5,0.7,0.9,0.95,0.99}
e m = 1000 (sample size),

@ 500 repetitions.

—— Best results are obtained by

Proportion 0.5

s Proportion 0.7

=100

logs)

Proportion 0.9

—¥—1r0
4

si.sm

log(s)

i Proportion 0.95

LTS

=i oot

—— Tl

25 3
logfs)

~CV
To -
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CV-based estimator

Simulation experiments

00000000 e000

Assumption (V1) fulfilled

0 0.7 0.99
Bias Std MSE Bias Std MSE
LPO | 1.4 34 13610 2] 03 34 11.410°°?
Stsm | -0.9 6.0 3621072 | -23 4.4 2491072
Stgoor | -3.3 4.7 3331072 | -41 5.2 4321032
Twil | -15 42 1941072 |-35 43 30.610°2
ABH | 27 24 7.6 1.0 01 09102
(s =10)
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CV-based estimator
000000000800

Simulation experiments

Assumption (V) ,,) fulfilled
Design

o Data are generated according to

1

WON(0,2.51072)+_T”° [NV(a,6%) + N(b,v?)], —ab>0.

@ Foreach1l </ <m,
Hio: E(Yi)=0 vs H;1: E(Y;)>0.
e 7y € {0.25,0.5,0.7,0.8,0.9}
e m = 1000
@ 200 trials
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Framework Classical g estimators CV-based estimator Tight FDR control Local FDR estimation

0000000000000 e0

Assumption (V) ) fulfilled

0 0.25 0.7 0.9

Bias Std MSE | Bias Std MSE | Bias Std MSE
LPO | 55 62 0.7 | 53 44 05 | 42 27 0.2
Sts,, | 75.0 0 56.0 {300 O 9.0 | 99 02 1.0
Stgoor | 43.2 32 187 | 174 16 3.0 [ 54 16 0.3
Twil | 732 25 536|274 23 80 | 80 1.3 0.7
ABH | 455 54 210|198 3.1 40 |74 13 0.6

o Except %OCV, every estimator overestimates 7.

@ This trends disappears as g grows.
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n C tirr CV-based estimator
00000000000 e

Simulation experiments

Dependence

e Data are split into b disjoint blocks.
o Correlation is generated using a mixed-model.
e Correlation intensity is given by 0 < p < 1.

0.08 T T T
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IIT FDR control

(C. and Robin (09), arXiv:0804.1189)
(C. and Robin (08), CSDA)
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Tight FDR control
@00

Plug-in adaptive procedure

Definition
Reject all hypotheses with p-values less than or equal to T, ( CV),
where the threshold T,(-) is given by

To(0) =sup{t € (0,1): Qu(t) <o}, VOc0,1] ,

~ mot

t) = -

W) = G (TP e R (P . Po)])
Proposition
The step-up procedure T, (7§") is equivalent to the BH-procedure

with m replaced by 7TCV
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Tight FDR control
oeo

Asymptotic control of FDR

Theorem

o€ [0,71'0[.

For § > 0, %g :%OCV+5.
Assumption (Vy« ,+)

f1 is differentiable

fi nonincreasing on [0, A*], nondecreasing on [u*, 1].

Then

FDR (Ta (%OCV)) <a+to(l) .
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Tight FDR control

ooce

Simulation experiments

Control of FDR and FNR

e o = 0.15,

@ FNR (between brackets) is the number of true alternatives

missed by the procedure.

@ Oracle is the plug-in procedure where the true 7 is used.

s | ™o To (7§Y) BH Oracle

10 | 05 | 14.74 (25.69) 6.94 (96.83) 15.02 (23.22)
0.7 | 15.14 (96.36) 10.29 (99.16) 15.12 (96.03)
0.95 | 14.65 (99.76) 14.37 (99.77) 14.95 (99.74)

25 [ 05 | 14.88 (0.88) 7.48 (17.72)  15.04 (0.79)
0.7 | 14.60 (22.83) 10.47 (61.00) 14.84 (21.93)
0.95 | 14.35 (99.16) 13.19 (99.23) 14.19 (99.14)
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IV Local FDR estimation

(Robin et al. (2007), CSDA)
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Local FDR estimation
@000

Local FDR and

Local FDR (locFDR)

V1<i<m, locFDR (P;) :=TP[H,ip is true | P;] .

@ Unlike FDR, locFDR yields a local information about H;.
o With the mixture model:

o _ T
mo+ (1 —m)h (P)) & (Pi)

locFDR (P;) =

— Depends on g and f;.

Strategy
@ Estimate mg

e Estimate g, the density of the p-values.
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Local FDR estimation
0e00

Density estimation

Weighted kernel estimator
Use a weighted kernel as an estimator of f;.

mo P; — P;
hso, 7 vl e
Vh >0, 1h( i) szlwk ( h )’
Vi,  wi=1—locFDR(P;) .
(1o<FDR(P) = s i)

— lterative algorithm to estimate locFDR and f;.
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Local FDR estimation
[e]e] e}

lterative algorithm

Algorithm
For a given my:

O Initialize (JocFDRO(Py), ..., locFDR(Pp)),
@ Estimate f{,
© Estimate g
Q@ Update (locFDR*(Py), ..., locFDRY(Pm)).

© Stopping rule:
Repeat Step 2-3 until JocFDR estimates are stable.

—— A preliminary estimate of mp must be plugged in.

Remark:
This algorithm has been proved to converge.

Improving multiple testing procedures by estimating the proportion of true null hypotheses Alain Celisse



n C tin \Y tir ght ; ntro Local FDR estimation
[e]e]e] }

R-package kerfdr

@ A R-package called kerfdr has been implemented.

@ Available on the CRAN at:
http://cran.at.r-project.org/web/packages/kerfdr/index.html.

@ Enables semi-supervised (or unsupervised) data.

@ Allows to deal with discrete p-values (truncation problems).

1

0.8

06 r

04 -

02 r
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Conclusion

o 7§V is more accurate than several other existing ones.

@ This estimator does not induce any additional computational
cost.

@ It is robust to various realistic assumptions on the p-value
distribution.

@ Enables yields a new plug-in procedure, which (asymptotically)
controls FDR at the desired level.
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Conclusion

o 7§V is more accurate than several other existing ones.

@ This estimator does not induce any additional computational
cost.

@ It is robust to various realistic assumptions on the p-value
distribution.

@ Enables yields a new plug-in procedure, which (asymptotically)
controls FDR at the desired level.

Thank you.
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